New Oleanene Triterpenoid Saponins from Madhuca Iongifolia

Kazuko Yoshikawa,*,† Masami Tanaka, ${ }^{\dagger}$ Shigenobu Arihara, ${ }^{\dagger}$ Bikas Chandra Pal, ${ }^{\ddagger}$ Subodh Kumar Roy, \ddagger Eiko Matsumura,§ and Satoshi K atayama§

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima 770-8514, J apan, Medicinal Chemistry Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, J adavpur, Calcutta-700 032, India, and Laboratory of Cel Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki Osaka, 569-1094, J apan

Received July 14, 2000
Four new oleanane-type triterpene glycosides, madlongisides A-D (1-4), were isolated from the seeds of Madhuca longifolia, and their structures were elucidated on the basis of extensive NMR experiments and chemical methods. Also obtained in this investigation were the known compounds mimusopside A, Mi -saponins A, B, and C , and 3-O- β-D-glucopyranosyl protobassic acid.

Madhuca Iongifolia (L.) Macbride (syn, Bassia Iongifolia L.) (Sapotaceae) is a tree widely distributed throughout India. The cake was reported to have insecticidal and piscicidal properties. ${ }^{1}$ Previous phytochemical studies on this plant have revealed the presence of Mi-saponins A, $B,{ }^{2}$ and $C .{ }^{3}$ The methanolic extract of the seeds of this plant showed many additional saponin spots on TLC. Therefore, we initiated a phytochemical investigation of the saponins of this species. We have isolated four new oleanene saponins, madlongisides A (1), B (2), C (3), and D (4), along with five known ol eanene saponins, mimusopside $A,{ }^{4} \mathrm{Mi}$ saponins $\mathrm{A},{ }^{2} \mathrm{~B},{ }^{2}$ and $\mathrm{C},{ }^{3}$ and 3-O- β-D-glucopyranosyl protobassic acid. ${ }^{5-7}$ The structures of these compounds were established on the basis of extensive spectroscopic as well as chemical degradation.

Madlongiside A (1) was obtained as an amorphous solid. The molecular formula was deduced as $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{10}$ from a

[^0][$\mathrm{M}-\mathrm{H}]^{-}$peak observed at $\mathrm{m} / \mathrm{z} 633$ in the negative FABMS and from its DEPT ${ }^{13} \mathrm{C}$ NMR data. The IR spectrum showed hydroxy ($3420 \mathrm{~cm}^{-1}$) and carbonyl group ($1720 \mathrm{~cm}^{-1}$) absorptions. The EIMS showed an ion peak at m/z 502 [M - 132] ${ }^{+}$and other characteristic peaks at m/z 254 and 248 due to loss of the sugar, H transfer, and retro Diels-Alder fission, which suggested the occurrence of three hydroxy and one carbonyl group in the A/B rings and one carboxy group in the C/D rings on the amyrin skeleton. ${ }^{8}$ The ${ }^{13} \mathrm{C}$ NMR spectrum showed 35 signals, of which 30 were assigned to a triterpenoid moiety and five to a pentose sugar moiety. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of six methyl signals, a vinylic proton, an isolated oxymethylene, and an isolated methylene. The ${ }^{13} \mathrm{C}$ NMR signals at $\delta 122.8$ and 143.7 were ascribable to $\mathrm{C}-12$ and $\mathrm{C}-13$ and confirmed the Δ^{12} oleanene skeleton. ${ }^{9}$ A signal at $\delta 176.4$ and the carbon resonances of ring D and E suggested the occurrence of a glycosylated COOH at C-28.9 Assignments of the significant proton and carbon resonances of the aglycon were made using ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and ROESY. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 1, the carbonyl ($\delta 212.6$) and the shifted C-1 (+17.0 ppm) and C-3 (+4.6 ppm) signals compared well with those of hederagenin ${ }^{10}$ and indicated the carbonyl group to be at $\mathrm{C}-2$. In the HMBC experiment, the methylene protons (C1) at $\delta 2.35$ and 2.61 gave cross-peaks with the carbonyl carbon at $\delta 212.6$ (C-2), the oxymethine carbon (C-3) at δ 78.5, the methine carbon (C-5) at $\delta 47.9$, the methine carbon at $\delta 48.6$ (C-9), and quaternary carbon at $\delta 43.7$ (C-10). The oxymethine proton at $\delta 5.32(\mathrm{H}-3)$ gave further cross-peaks with the methylene carbon at $\delta 56.0$ (C-1), the carbonyl carbon at $\delta 212.6$ (C-2), the quaternary carbon at $\delta 50.8$ (C-4), the methine carbon at $\delta 47.9$ (C-5), oxymethylene carbon at $\delta 65.2$ (C-23), and the methyl carbon at δ 15.8 (C-24). Hence, the aglycon of 1 was formulated as $3 \beta, 6 \beta, 23$-trihydroxy-2-oxo-olean-12-ene-28-oic acid (2-oxouncargenin A), a new triterpenoid sapogenin. Acid hydrolysis of 1 afforded L-arabinose, which was confirmed by specific rotation using chiral detection by HPLC analysis. ${ }^{11}$ The H-1 and H-2 vicinal coupling constant (5.8 Hz) for arabinose indicated that this sugar occurred in $\mathbf{1}$ as the α-anomeric in ${ }^{4} \mathrm{C}_{1}$ configuration. ${ }^{12}$ Accordingly, 1 was formulated as $3 \beta, 6 \beta, 23$-trihydroxy-2-oxo-ol ean-12-ene-28oic acid (2-oxouncargenin A) 28-0- α-L-arabinopyranoside.

The negative FABMS of madlongiside B (2) revealed a deprotonated molecular ion peak at m/z $795[\mathrm{M}-\mathrm{H}]^{-}, 162$ mass units more than that of $\mathbf{1}$. Acid hydrolysis of $\mathbf{2}$
afforded L-arabinose and D-glucose. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ indicated the presence of α-arabinopyranosyl and β-glucopyranosyl units. A ${ }^{13} \mathrm{C}$ NMR comparison of 2 with 1 showed a 9.5 ppm glycosilation shift ${ }^{13,14}$ of $\mathrm{C}-3$, demonstrating that the second sugar linkage was at C-3OH . HMBC correlations between $\mathrm{H}-1$ of glucose and $\mathrm{C}-3$, and $\mathrm{H}-1$ of arabinose and $\mathrm{C}-28$, suggested that the glucosyl and arabinosyl units were located at C-3 and C-28, respectively. Accordingly, 2 was formulated as $3-0-\beta-\mathrm{D}-$ glucopyranosyl-3 $\beta, 6 \beta, 23$-trihydroxy-2-oxo-olean-12-ene-28oic acid (2-oxouncargenin A) 28-O- α-L-arabinopyranoside.

Madlongiside C and D were identified as compounds 3 and 4, respectively, previously obtained from the enzymatic hydrolysis of Mi-saponin A, isolated from the seed kernels of Madhuca Iongifolia by Kitagawa et al. ${ }^{2}$ As far as we know, full assignments of the proton and carbon resonances of $\mathbf{3}$ and $\mathbf{4}$ have not been reported previously. Madlongisides C and D are described here for the first time from a natural source and with complete NMR data.

The compounds madlongiside A-D (1-4) were all tested for activity against Kato III cells. ${ }^{15}$ No activity was observed in this assay.

Experimental Section

General Experimental Procedures. Melting points were measured with a Yanagimoto micromelting point apparatus and are uncorrected. Optical rotations were taken on a J ASCO DIP-360 polarimeter. IR spectra were recorded on a J ASCO FT/IR-5300, and NMR spectra were run on Varian UNITY 600 and/or a J EOL GSX-400 spectrometer in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ solution, using TMS as internal standard. NMR experiments included ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, TOCSY, and ROESY. Coupling constants (J values) are given in hertz. The FABMS (Xe gun, 10 kV , triethylene glycol as the matrix) was measured on a JEOL JMS-HX-100 mass spectrometer. HPLC separations were performed with a Hitachi HPLC system (L-6200 Pump, L-4000 UV).

Plant Material. The seeds of Madhuca longifolia (L.) Macbride were collected in J une 1998 fromJ adavpur, Calcutta, India, and identified by Dr. N. D. Paria, Department of Botany, University of Calcutta. A voucher specimen is deposited in the Herbarium of this Institute.

Extraction and Isolation. The air-dried seeds (2.2 kg) of M . longifolia were defatted with petroleum ether (boiling point range $60-80^{\circ} \mathrm{C}$) and then extracted with MeOH by percolation. The MeOH extract was evaporated to dryness in vacuo. The residue (180 g) was suspended in water and extracted successively with EtOAc and n-BuOH ($3 \times 1 \mathrm{~L}$, each). Solutions were evaporated to dryness in vacuo to provide EtOAc-soluble (22 g), n-BuOH -soluble (65 g), and water-sol uble portions (90 g). An aliquot (20 g) of n - BuOH -soluble portion was chromatographed on silica gel (500 g) eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (9:1, 4:1, 7:3, 3:2) and afforded fractions I (1.50 g), II (1.92 g), III $(2.75 \mathrm{~g})$, and IV $(3.80 \mathrm{~g})$. Fraction I was purified by repeated CC over silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (4:1) to afford crude madlongisides A (20 mg) and C (30 mg), which were purified further by HPLC on ODS with $65 \% \mathrm{MeOH}$ to furnish madlongiside A (1, 7 mg) and C (3, 10 mg), respectively. Fraction II was also purified by chromatography over silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (7:3) to yield madlongisides B ($\mathbf{2}, 10 \mathrm{mg}$) and $\mathrm{D}(4,0.15 \mathrm{~g})$ and 3-O- β-D-glucopyranosyl protobassic acid (0.25 g). Similarly, chromatography over silica gel of fractions III and IV eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (3:2) and ($1: 1$) yielded mimusopside A (0.36 g), Mi-saponins A (0.19 g) and B (1.1 g), and crude Mi-saponin C (0.37 g). Preparative HPLC of the last compound on ODS with $24 \% \mathrm{CH}_{3} \mathrm{CN}$ furnished Mi-saponin C (0.1 g).

Madlongiside A (1): colorless needles; mp 202-204 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+34.5^{\circ}$ (c 0.8, MeOH); IR (dry film) $v_{\max } 3420(\mathrm{OH}), 1720$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 29), $0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$
24), $1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 2.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 12.0, H-1 α), 2.58 (1 H, br s, H-5 $), 2.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0, \mathrm{H}-1 \beta$), 3.32 (1H, dd, J = 13.0, $4.0 \mathrm{~Hz}, \mathrm{H}-18), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$, $2.0 \mathrm{~Hz}, \mathrm{H}-5$ of ara), $4.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}_{2}-23\right), 4.25(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}_{2}-23$), 4.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ of ara), 4.41 ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=10.0,3.5 \mathrm{~Hz}, \mathrm{H}-5$ of ara), $4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of ara), 5.07 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $5.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 5.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,3.0 \mathrm{~Hz}$, $\mathrm{H}-12), 6.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{H}-1\right.$ of ara); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 212.6$ ($\mathrm{s}, \mathrm{C}-2$), 176.4 ($\mathrm{s}, \mathrm{C}-28$), 143.7 ($\mathrm{s}, \mathrm{C}-13$), 122.8 (d, C-12), 78.5 (d, C-3), 67.6 (d, C-6), 65.2 (t, C-23), 56.0 (t, C-1), 50.8 ($\mathrm{s}, \mathrm{C}-4$), 48.6 (d, C-9), 47.9 (d, C-5), 47.4 (s, C-17), 46.5 (t, C-19), 43.7 (s, C-10), 43.1 (s, C-14), 42.0 (d, C-18), 41.1 (t, C-7), 40.0 (s, C-8), 34.4 (t, C-21), 33.4 ($\mathrm{q}, \mathrm{C}-29$), 33.0 (t, C-22), 31.2 ($\mathrm{s}, \mathrm{C}-20$), 28.6 ($\mathrm{t}, \mathrm{C}-15$), 26.4 ($\mathrm{q}, \mathrm{C}-27$), 24.4 ($\mathrm{t}, \mathrm{C}-16$), 24.2 (q, C-30), 23.6 (t, C-11), 18.9 (q, C-26), 18.8 (q, C-25), 15.8 (q, C-24), Ara: 96.0 (d, C-1), 74.1 (d, C-3), 71.5 (d, C-2), 68.4 (d, C-4), 66.5 (t, C-5); FABMS m/z [M - H] - 663; EIMS m/z 472 (4.0), 426 (5.9), 254 (2.0), 248 (100), 233 (11.0). 219 (6.5), 203 (95), 202 (10.0), 189 (13.5), 133 (22.0), 119 (13.3), 105 (12.9); anal. C $64.02 \%, \mathrm{H} 8.71 \%$, cal cd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{C}, 64.39 \%$, H 8.65\%.

Madlongiside B (2): colorless needles; mp $212-214{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+15.7$ (c 1.5, MeOH); IR (dry film) $v_{\max } 3400(\mathrm{OH}), 1735$, $1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} N \mathrm{NR}\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-29\right), 0.94$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), 1.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27$), 1.14 (2 H m , $\mathrm{H}-15 \alpha, \mathrm{H}-21 \beta$), 1.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19 \alpha$), 1.34 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.5$, $13.5,4.0 \mathrm{~Hz}, \mathrm{H}-21 \alpha)$, 1.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24$), 1.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25$), $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.74(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha, \mathrm{H}-19 \alpha), 1.85(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=12.0,3.0 \mathrm{~Hz}, \mathrm{H}-7 \beta), 1.90(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \alpha, \mathrm{H}-16 \beta), 1.97(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7 \alpha$), 1.98 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.0,12.0,3.0 \mathrm{~Hz}, \mathrm{H}-22 \beta$), 2.03 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,3.0 \mathrm{~Hz}, \mathrm{H}-22 \alpha$), 2.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \alpha, \mathrm{H}-11 \beta$), $2.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 2.35(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.5,13.5$, $3.5 \mathrm{~Hz}, \mathrm{H}-15 \beta), 2.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{H}-1 \beta), 2.50(1 \mathrm{H}, \mathrm{br}$ s, H-5 $)$, 3.29 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,4.0 \mathrm{~Hz}, \mathrm{H}-18$), 3.90 ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=9.5,2.5 \mathrm{~Hz}, \mathrm{H}-5$ of ara), 3.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of glc), $4.05(1 \mathrm{H}$, dd, J $=9.0,8.0 \mathrm{~Hz}, \mathrm{H}-2$ of glc), $4.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}_{2^{-}}\right.$ 23), 4.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,9.0 \mathrm{~Hz}, \mathrm{H}-3$ of glc), $4.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=9.5,9.0 \mathrm{~Hz}, \mathrm{H}-4$ of glc$), 4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ of ara), $4.35(1 \mathrm{H}$, dd, J $=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-6$ of glc), 4.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-23\right), 4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,3.0 \mathrm{~Hz}, \mathrm{H}-5$ of ara), $4.42(1 \mathrm{H}$, dd, J = 12.0, 2. $5 \mathrm{~Hz}, \mathrm{H}-6$ of glc), 4.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of ara), $4.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,6.0 \mathrm{~Hz}, \mathrm{H}-2$ of ara), $5.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6)$, $5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1$ of glc), $5.32(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.49$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,3.0 \mathrm{~Hz}, \mathrm{H}-12$), $6.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-1$ of ara); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 210.5$ ($\mathrm{s}, \mathrm{C}-2$), 176.4 (s , C-28), 143.7 (s, C-13), 122.8 (d, C-12), 82.8 (d, C-3), 67.6 (d, C-6), 64.4 (t, C-23), 56.8 (t, C-1), 51.2 (s, C-4), 48.6 (d, C-9), 48.4 (d, C-5), 47.4 (s, C-17), 46.4 (t, C-19), 43.4 ($s, C-10$), 43.1 ($\mathrm{s}, \mathrm{C}-14$), 42.0 (d, C-18), 41.1 (t, C-7), 40.0 ($\mathrm{s}, \mathrm{C}-8$), 34.4 (t, C-21), 33.4 (q, C-29), 33.0 (t, C-22), 31.2 (s, C-20), 28.6 ($\mathrm{t}, \mathrm{C}-15$), 28.6 (t, C-15), 26.5 ($q, C-27$), 24.2 ($\mathrm{t}, \mathrm{C}-11$), 24.0 ($q, \mathrm{C}-30$), 23.6 (t , C-16), 18.9 (q, C-25), 18.7 ($q, C-26$), 16.3 ($q, C-24$), Ara: 96.0 (d, C-1), 74.1 (d, C-3), 71.5 (d, C-2), 68.4 (d, C-4), 66.5 (t, C-5), GIc: 104.3 (d, C-1), 78.5 (d, C-5), 78.0 (d, C-3), 74.9 (d, C-2), 71.4 (d, C-4), 62.4 (d, C-6); FABMS m/z [M - H] 795 , [M - H - ara] - 663; anal. C 60.46%, H 7.98%, calcd for $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{15}{ }^{\circ}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}, 60.43 \%, \mathrm{H} 8.16 \%$.

Madlongiside C (3): colorless needles; mp 196-198 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+32.0^{\circ}$ (c 1.2, MeOH); IR (dry film) $v_{\max } 3400(\mathrm{OH}), 1735$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 29), $0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ 26), $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 2.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-5 \alpha), 3.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,4.0 \mathrm{~Hz}, \mathrm{H}-18), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.0,2.0 \mathrm{~Hz}, \mathrm{H}-5$ of ara), 4.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}_{2}-23$), $4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ of ara), $4.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{H}-3), 4.36$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0, \mathrm{H}_{2}-23$), 4.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of ara), $4.42(1 \mathrm{H}, \mathrm{m}$, H-4 of ara), 4.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-2$ of ara), 5.16 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H-6} \mathrm{)}$, $5.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,3.0 \mathrm{~Hz}, \mathrm{H}-12), 6.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}$, $\mathrm{H}-1$ of ara); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 176.5$ (s, C-28), 143.6 (s, C-13), 123.0 (d, C-12), 73.2 (d, C-3), 72.1 (d, C-2), 67.9 (d, C-6), 67.4 (t, C-23), 49.4 (d, C-5), 49.3 (d, C-9), 47.8 (t, C-1), 47.5 (s, C-17), 46.5 (t, C-19), 43.9 (s, C-4), 43.1 (s, C-14), 42.1 (d, C-18), 41.4 (t, C-7), 39.7 (s, C-8), 37.4 (s, C-10), 34.4 (t, C-21), 33.4 (q, C-29), 33.0 (t, C-22), 31.2 (s, C-20), 28.5 ($\mathrm{t}, \mathrm{C}-15$), 26.5 (q, C-27), 24.4 (t, C-11), 24.0 (q, C-30), 23.5 (t, C-16), 19.4 (q,

C-26), 19.1 (q, C-25), 16.6 ($q, C-24$), Ara: 96.0 (d, C-1), 74.1 (d, C-3), 71.5 (d, C-2), 68.3 (d, C-4), 66.4 (t, C-5); FABMS m/z $[\mathrm{M}-\mathrm{H}]-635$; anal. C 64.35\%, H 9.11\%, cal cd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{10}{ }^{\circ}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}, 64.20 \%$ H 8.93\%.

Madlongiside D (4): colorless needles; mp 230-232 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-12.9^{\circ}$ (c 1.8, MeOH); IR (dry film) $v_{\max } 3410(\mathrm{OH}), 1740$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 29), 0.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), 1.14 (1 H , ddd, J $=11.0,3.53 .5 \mathrm{~Hz}$, $\mathrm{H}-21 \beta), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 1.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5 .5 .5 \mathrm{~Hz}$, $\mathrm{H}-19 \beta), 1.35(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \alpha, \mathrm{H}-15 \alpha, \mathrm{H}-21 \alpha), 1.73(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 11.0, $3.5,3.5 \mathrm{~Hz}, \mathrm{H}-22 \alpha$), $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.84$ (1 H , dd, J $=15.5,15.5 \mathrm{~Hz}, \mathrm{H}-19 \alpha), 1.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,6.0, \mathrm{~Hz}, \mathrm{H}-9 \alpha)$, $1.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5 \alpha), 2.00(2 \mathrm{H}, \mathrm{m}, 7 \beta, 22 \beta), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}{ }^{-}\right.$ 24), $2.08(1 \mathrm{H}, \mathrm{m}, 7 \alpha), 2.11(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.0,6.0,3.5 \mathrm{~Hz}$, $\mathrm{H}-11 \alpha), 2.26$ ($1 \mathrm{H}, \mathrm{m}, 15 \beta$), 2.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25$), 2.36 (1 H , ddd, $\mathrm{J}=12.0,12.0,6.0 \mathrm{~Hz}, \mathrm{H}-11 \beta), 2.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.5,2.5 \mathrm{~Hz}$, $\mathrm{H}-1 \beta), 3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,5.0 \mathrm{~Hz}, \mathrm{H}-18), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.0,3.5 \mathrm{~Hz}, \mathrm{H}-5$ of ara), 4.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}_{2}-23$), $4.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-4$ of rha), $4.32(1 \mathrm{H}, \mathrm{J}=4.0$ $\mathrm{Hz}, \mathrm{H}-3), 4.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}_{2}-23\right), 4.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of ara), 4.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-5$ of ara, H-5 of rha), 4.54 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=9.5,3.5 \mathrm{~Hz}, \mathrm{H}-3$ of rha), $4.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-2$ of ara), 5.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,3.0 \mathrm{~Hz}, \mathrm{H}-6$), $5.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,3.5 \mathrm{~Hz}$, $\mathrm{H}-12), 5.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1$ of rha), $6.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{H}-1$ of ara); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 176.3$ (s, C-28), 143.6 ($\mathrm{s}, \mathrm{C}-13$), 123.0 (d, C-12), 73.3 (d, C-3), 72.1 (d, C-2), 68.1 (d, C-6), 67.5 (t, C-23), 49.4 (d, C-5 and C-9), 47.7 (t, C-1), 47.7 (s, C-17), 46.6 (t, C-19), 43.9 (s, C-4), 43.1 (s, C-14), 42.1 (d, C-18), 41.2 (t, C-7), 39.7 (s, C-8), 37.4 (s, C-10), 34.5 (t, C-21), 33.5 (q, C-29), 33.1 (t, C-22), 31.2 (s, C-20), 28.8 (t, C-15), 26.5 (q, C-27), 24.4 (t, C-11), 24.1 (q, C-30), 23.5 (t, C-16), 19.4 (q, C-25), 18.9 (q, C-26), 16.5 (q, C-24), Ara: 93.8 (d, C-1), 75.3 (d, C-2), 71.7 (d, C-3), 67.2 (d, C-4), 64.2 (t, C-5), Rha: 101.6 (d, C-1), 74.1 (d, C-4), 72.8 (d, C-2 and C-3), 70.6 (d, C-5), 19.1 (q, C-6); FABMS m/z [M - H] ${ }^{-}$781, [M - H - ara - rha] ${ }^{-}$503; anal. C 61.12\%, H 8.81\%, calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{14} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{C}, 61.48 \%, \mathrm{H}$ 8.56\%.

Identification of Component Sugar of Madlongisides

 A-D (1-4). A solution of each compound ($2-3 \mathrm{mg}$) in 5% $\mathrm{H}_{2} \mathrm{SO}_{4}$-dioxane (1:1) was heated at $100^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, neutralized with Amberlite IRA-35, and evaporated in vacuo to dryness. The identification and the D or L configuration of each sugar was determined by using RI detection (Waters 410) and chiral detection (Shodex OR-1) by HPLC (Shodex RSpak $\mathrm{NH}_{2} \mathrm{P}-504 \mathrm{D}$ column, $\mathrm{CH}_{3} \mathrm{CN}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{3} \mathrm{PO}_{4}, 95: 5: 1,1 \mathrm{~mL} / \mathrm{min}, 47^{\circ} \mathrm{C}$) by comparison with an authentic sugar (10 mmol each of $\mathrm{d}-\mathrm{glc}$, L-ara, and L-rha). The sugar portion gave the following peaks: L-(+)-rha 6.40 min ; L-(+)-ara 10.80 min ; D-(+)-glc 20.70; ara from 1 and 3, ara and glc from 2, ara and rha from 4.
References and Notes

(1) Sastri, M. N. TheWealth of India Raw Materials; CSIR: New Delhi, 1962; Vol. 6, p 207.
(2) Kitagawa, I.; Inada, A.; Y oshioka, I.Chem. Pharm. Bull. 1975, 23, 2268-2278.
(3) Kitagawa, I.; Shirakawa, K.; Yoshikawa, M. Chem. Pharm. Bull. 1978, 26, 1100-1110
(4) Sahu, N. P. Phytochemistry 1996, 41, 883-886.
(5) Kitagawa, I.; Inada, A.; Yoshioka, I.; Somanthan, R.; Sultanbawa, M. U. S. Chem. Pharm. Bull. 1972, 20, 630-632.
(6) Yoshioka, I.; Inada, A.; Kitagawa, I. Tetrahedron 1974, 30, 707-714.
(7) J iang, Y.; Ali, A. O.; Guillaume, D.; Weinger, B.; Anton, R. Phytochemistry 1994, 35, 1013-1015.
(8) Karliner, J.; Djerassi, C. J. Org. Chem. 1966, 31, 1945-1956.
(9) Mahato, S. B.; Kundu, A. P. Phytochemistry 1994, 37, 1517-1575.
(10) Takemoto T.; Arihara S.; Yoshikawa K.; Kusumoto K.; Hayashi T. Yakugaku Zasshi 1984, 103, 246-255.
(11) Yoshikawa, K.; Satou, Y.; Tokunaga, Y.; Tanaka, M.; Arihara, S. J. Nat. Prod. 1998, 61, 440-445.
(12) Ishii, H.; Kitagawa, I.; Matsushita, K.; Shirakawa, K.; Tori, K.; Tozyo, T.; Yoshikawa, M.; Yoshimura, Y. Tetrahedron Lett. 1981, 22, 15291532.
(13) Tori, K.; Seo, S.; Sakurai, K.; Tomita, Y. Tetrahedron Lett. 1977, 179182.
(14) Kasai, R.; Ogiwara, M.; Asakawa, J.; Mizutani, K.; Tanaka, O. Tetrahedron 1979, 35, 1427-1432.
(15) Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.

NP000351R

[^0]: * To whom correspondence should be addressed. Tel.: 88-622-9611. Fax: 88-655-3057. E-mail: yosikawa@ph.bunri-u.ac.jp.
 ${ }^{\dagger}$ Tokushima Bunri University.
 \ddagger Indian Institute of Chemical Biology.
 § Osaka University of Pharmaceutical Sciences.

